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 المستخلص 

واتجاه مستقبلي في الطاقة والتحكم  تعد الضوابط التي تتحمل الأخطاء في مصادر الطاقة المتجددة مجال بحث قوي  

الآلي. لذلك، يميل اقتراح البحث هذا إلى تحسين المراقبة والتشخيص والتحكم في توربينات الرياح من خلال تطوير تقنية 

  الفحص الاني والمتزامن للتحكم في الأخطاء في أعطال أجهزة الاستشعار الموجودة في التوربينات الهوائية. توربينات الرياح 

العالية في    اتنظام مكلف ويتم تصنيعه ليعمل لعشرات السنين. لذلك تطلب السلطات والشرك المشغلة السلامة والموثوقية 

عمل توربينات الرياح. تتمثل الفكرة الرئيسية لهذا الاقتراح البحثي في التغلب على إشارات القياس المفقودة من المستشعرات 

في     ضمان عدم وجود خطر يؤدي لتدمير وتلف لهذا التوربين.لمواصلة تشغيل التوربين  وتزويد وحدة التحكم بحلول بديلة ل

، والتي تعتمد على تحليل الإشارات البيانات أو القائمة على الإشارة، تتم دراسة ما يسمى بالمنهجيات القائمة على هذا البحث

استناداً   Matlab / Simulinkوالتحقق منها باستخدام    تم اختبار الخوارزمية المطورة المتولدة مباشرة من النظام المرصود.

 إلى بيانات وقياسات توربينات الرياح الحقيقية التي تم جمعها للبحث والتطوير في تشغيل توربينات الرياح.
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Abstract 

Fault-tolerant controls on renewable energy sources are a hot research domain and the 

future trend in energy and automatic control. Therefore, this research proposal tends to improve 

the monitoring, diagnosis, and control of the wind turbine by developing an online technique 

of fault-tolerant control in existing sensor faults in the wind turbine. A wind turbine is an 

expensive system, and it is manufactured to operate for tens of years.  The safety and reliability 

of the wind turbine are requested by authorities and operated companies.  The main idea of this 

research proposal is to overcome the missing measurement signals of the sensors and provide 

the controller with alternative solutions to continue the operation of the turbine since there is 

no risk of damage to this turbine. The developed algorithm has been tested and verified using 

Matlab/Simulink based on real wind turbine data and measurements collected for research and 

development of wind turbine operation. 



iv 
 

Table of Contents 

 ii ................................................................................................................................................... المستخلص 

Abstract .................................................................................................................................................. iii 

List of Symbols ...................................................................................................................................... ix 

Chapter One Introduction ................................................................................................................. 1 

1.1 Wind power and wind turbines ............................................................................................... 1 

1.2 Fault-Tolerant Control and Fault Diagnosis ........................................................................... 3 

1.3 Motivation and Goal ............................................................................................................... 5 

1.4 Importance and Expected Impact ............................................................................................ 5 

1.5 Methodology ........................................................................................................................... 6 

1.6 Outcomes and Deliverables .................................................................................................... 6 

Chapter Two Literature Review ........................................................................................................ 7 

2.1 General Review ....................................................................................................................... 7 

2.2 Fault Detection and Isolation .................................................................................................. 8 

2.3 Fault Identification / Reconstruction ....................................................................................... 9 

2.4 Fault-Tolerant Control ............................................................................................................ 9 

2.5 Existing Fault Diagnosis and FTC Methods ......................................................................... 10 

2.6 Fault Diagnosis and Fault-Tolerant Control of Wind Turbines ............................................ 11 

2.7 FDIR and Residual Concept ................................................................................................. 12 

2.8 Fault Diagnosis Methods Classifications .............................................................................. 17 

Chapter Three Wind Turbine Description ........................................................................................ 21 

3.1 Wind Turbine Components ................................................................................................... 21 

3.2 General Control Strategy ...................................................................................................... 22 

3.3 Wind Turbine Parts Modelling ............................................................................................. 25 

3.4 Benchmark Model ................................................................................................................. 29 

3.4.1 Model Parameters ............................................................................................................. 30 

3.4.2 Faults Description ............................................................................................................. 31 

Chapter Four Simulation Results .................................................................................................... 32 

4.1 Wind speed profile ................................................................................................................ 32 

4.2 Controller Behavior .............................................................................................................. 32 

4.3 Generator Speed Sensor Fault ............................................................................................... 33 

4.4 Rotor Speed Sensor Fault ...................................................................................................... 35 

4.5 Pitch Position Sensor Fault (1st Blade).................................................................................. 38 

4.6 Pitch Position Sensor Fault (2nd Blade) ................................................................................. 41 

4.7 Pitch Position Sensor Fault (3rd Blade) ................................................................................. 44 

4.8 Concluding Remarks ............................................................................................................. 47 

Chapter Five Detection Filter and FTC Algorithm ......................................................................... 48 



v 
 

5.1 Detection Filter Formulation ............................................................................................. 48 

5.2 Residual Evaluation and Threshold Setting ...................................................................... 49 

5.3 AFTC Algorithm ............................................................................................................... 54 

6.1 Conclusion ........................................................................................................................ 58 

6.2 Recommended Future Work ............................................................................................. 58 

Bibliography ......................................................................................................................................... 59 

 



vi 
 

List of Figures 

Figure 1.1: World’s capacity of wind-generated power [1,2]. ................................................................ 1 

Figure 2.1: AFTC Structure [22]. ........................................................................................................... 8 

Figure 2.2: General scheme of model-based fault diagnosis [48]. ........................................................ 13 

Figure 2.3: Illustration of the concepts of hardware redundancy and analytical redundancy for FDI 

[49]. ....................................................................................................................................................... 14 

Figure 2.4: Fault detection, isolation, and reconfiguration scheme [49]. .............................................. 15 

Figure 2.5: Classification of fault diagnosis methods [48] . .................................................................. 18 

Figure 3.1: Horizontal-axis wind turbine parts and components [20]................................................... 21 

Figure 3.2: Block diagram of control system for wind turbine (Benchmark Model). .......................... 23 

Figure 3.3: Typical power curve for the wind turbine [18]. .................................................................. 23 

Figure 3.4: Typical control strategy for applying the typical power curve [20]. .................................. 24 

Figure 3.5: Reference controller structure [20]. .................................................................................... 25 

Figure 3.6: Torque coefficient "𝐶𝑞 (𝛽,λ)" of the benchmark model [18]. ............................................ 30 

Figure 4.1: wind speed profile applied on the benchmark model. ........................................................ 32 

Figure 4.2: Controller switching behavior between the two control modes. ........................................ 33 

Figure 4.3: ωg measurement without and with applying fault 1. .......................................................... 33 

Figure 4.4: Controller switching behavior between the two control modes during fault 1. .................. 34 

Figure 4.5: Pg measurement without and with applying fault 1. ........................................................... 34 

Figure 4.6: ωr measurement without and with applying fault 2. ........................................................... 35 

Figure 4.7: Controller switching behavior between the two control modes during fault 2. .................. 36 

Figure 4.8: τr measurement without and with applying fault 2. ............................................................ 36 

Figure 4.9: ωg measurement without and with applying fault 2. .......................................................... 37 

Figure 4.10: τg measurement without and with applying fault 2. .......................................................... 37 

Figure 4.11: Pg measurement without and with applying fault 2. ......................................................... 38 

Figure 4.12: Controller switching behavior between the two control modes during fault 3. ................ 38 

Figure 4.13: ωr measurement without and with applying fault 3. ......................................................... 39 

Figure 4.14: τr measurement without and with applying fault 3. .......................................................... 39 

Figure 4.15: ωg measurement without and with applying fault 3. ........................................................ 40 

Figure 4.16: τg measurement without and with applying fault 3. .......................................................... 40 

Figure 4.17: Pg measurement without and with applying fault 3. ......................................................... 41 

Figure 4.18: Controller switching behavior between the two control modes during fault 4. ................ 41 

Figure 4.19: ωr measurement without and with applying fault 4. ......................................................... 42 

Figure 4.20: τr measurement without and with applying fault 4. .......................................................... 42 

Figure 4.21: ωg measurement without and with applying fault 4. ........................................................ 43 

Figure 4.22: τg measurement without and with applying fault 4. .......................................................... 43 

Figure 4.23: Pg measurement without and with applying fault 4. ......................................................... 44 

Figure 4.24: Controller switching behavior between the two control modes during fault 5. ................ 44 

Figure 4.25: ωr measurement without and with applying fault 5. ......................................................... 45 

Figure 4.26: τr measurement without and with applying fault 5. .......................................................... 45 

Figure 4.27: ωg measurement without and with applying fault 5. ........................................................ 46 

Figure 4.28: τg measurement without and with applying fault 5. .......................................................... 46 

Figure 4.29: Pg measurement without and with applying fault 5. ......................................................... 47 

Figure 5.1: the threshold value during fault-free operation. ................................................................. 51 

Figure 5.2: Residual value during fault 1 occurrence (when ωg is faulty). ........................................... 51 

Figure 5.3: Residual value during fault 2 occurrence (when ωr is faulty). ............................................ 52 

Figure 5.4: Residual value during fault 3 occurrence (when β1 is faulty). ............................................ 52 

Figure 5.5: Residual value during fault 4 occurrence (when β2 is faulty). ............................................ 53 



vii 
 

Figure 5.6: Residual value during fault 5 occurrence (when β3 is faulty). ............................................ 53 

Figure 5.7: Fault detection rate. ............................................................................................................ 54 

Figure 5.8: AFTC Algorithm Structure. ................................................................................................ 55 



viii 
 

List of Tables 

Table 1-1: Wind-generated power share of total power production of a few countries. ......................... 2 

Table 1-2: The increase in wind turbines dimensions and ratings in the past 30 years [1]. .................... 2 

Table 3-1: Wind model parameters. ...................................................................................................... 30 

Table 3-2: Blade and pitch model parameters....................................................................................... 30 

Table 3-3: Drive train model parameters. ............................................................................................. 31 

Table 3-4: Generator and Converter ..................................................................................................... 31 

Table 3-5: Controller parameters. ......................................................................................................... 31 

Table 3-6: Sensors model parameters. .................................................................................................. 31 

Table 3-7: The faults scenario applied on the benchmark model. ........................................................ 31 



ix 
 

List of Symbols 

vw The Wind Speed Acting on The Turbine Blades.  

τw  The Torque from The Wind Acting on The Turbine Blades 

τr         The Rotor Torque 

ωr The Rotational Speed of The Rotor 

τg     The Generator Torque 

ωg   The Rotational Speed of The Generator 

βr The Reference to The Pitch Position 

βm         The Measured Pitch Position 

τw,m        An Estimated Wind Torque Based on Wind Speed Measurement 

ωr,m    The Measured Rotational Speed of The Rotor 

ωg,m       The Measured Rotational Speed of The Generator 

τg,m The Measured Generator Torque. 

τg,r         The Torque Reference to The Generator 

Pr       The Power Reference to The Wind Turbine 

Pg The Power Produced by The Generator 

Pg,m    The Measured Power Produced by The Generator 

ηg  The Efficiency of The Generator. 

ηgc The Efficiency of The Generator and Converter 

ηdt        The Efficiency of The Drive Train 

αgc         The Generator and Converter Model Parameter 

λ  Tip Speed Ratio. 

ζ  The Damping Factor 

ωn  The Natural Frequency 

ωn2 and ζ2       The Two Transfer Function Parameters for The Pressure Drop Case 

ωn3 and ζ3            The Two Parameters for The Increased Air Content Model 

R Radius of the Blades 

Cp  Power Coefficient of The Turbine 

CPmax   The Maximum Value of The Power Coefficient. 

Cq Torque Coefficient of The Turbine 

ρ The Air Density 

A The Area Swept by The Turbine Blades. 

m The Mean Value of The Noise 

σ  The Variance of The Noise 

n  Sample No 

N  The No. Of Samples 

 

 



1 
 

Chapter One  

                                 Introduction 

1.1 Wind power and wind turbines 

Technology rapid development has raised power requirement to run the electrical 

equipment. This put more pressure on fossil fuels and raised energy cost. That is why 

renewable energy sources must be focused, especially that fossil fuels are extremely limited. 

In addition to that, it has become a necessity to preserve ecological system and atmosphere 

from pollution resulting from fossil fuels and greenhouse gases.  

Among the most important renewable energy resources comes the wind energy which 

achieved marvelous results and has attracted the energy investors’ eyes. So, it has obtained 

description “The world’s fastest growing renewable energy resource”, having achieved 30% 

average annual growth over the past 20 years. Figure (1.1) exhibits the international wind 

power capacity over the last 25 years [1,2]. 

 

 Figure 1.1: World’s capacity of wind-generated power [1,2]. 

 

Table 1-1 shows the wind power share from the total power requirement for a few 

countries, whereas table 1-2 shows the development of wind turbines capacity during the last 

four decades. 
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Table 1-1: Wind-generated power share of total power production of a few countries. 

Country Wind-generated power percentage 
Expected 

year 
Reference 

United States 30% (300 GW) 2030 [3] 

European Union 
12-14% 2020 

[4,5] 
25% 2030 

China 15% 2020 [1,4] 

Denmark 50% 2020 [6] 

 

 
Table 1-2: The increase in wind turbines dimensions and ratings in the past 30 years [1]. 

Length of 

Impeller Blade 

(m) 

Height of the 

Holding Tower 

(m) 

Nominal power 

rating (kW) 
Year Applied Fixation 

8.5 30 75 1980-1990 Onshore 

15 45 300 1990-1995 Onshore 

25 60 750 1995-2000 Onshore 

35 70 1500 2000-2005 Onshore 

40 95 1800 2005-2010 Onshore 

50 100 3000 2010-2015 Onshore 

62.5 130 5000 2010-2015 Offshore 

75 160 10000 2015-present Onshore 

125 220 20000 2015-present Offshore 
 

Extensive need for maintenance of these turbines has double down sides; more cost, plus 

reduction of power generation because of off-time. [7,8]. Therefore, this raises the money spent 

per energy unit, and consequently power generated from wind turbine might be less viable 

when it is compared to fossil resources. For instance, offshore wind turbines need maintenance 

that consumes 20-25% of the entire revenue [9-11] and onshore ones cost 10-15% for 20 years 

of operation [12]. 

More maintenance leads to double negative impact, i.e., more maintenance expenses and 

also, less generated power because of increased off-time [7, 8]. So, the cost of the energy 
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generated is raised in general and, accordingly, the wind turbine generated power could be less 

competitive when it is compared to traditional energy resources.  

The desired goal in this field is to reduce maintenance cost, decrease downtime, raise the 

generated power, and therefore develop viability and efficiency [13]. 

 To achieve this goal, Fault Detection and Isolation (FDI) as well as Fault Tolerant Control 

(FTC) are efficient methodologies. Fault data collected by FDI units can be utilized for 

optimizing the maintenance process via remote inspection [14]. Using FTC gives equipment 

chance to achieve the desired sturdiness in terms of faults and, consequently, it can stabilize 

the wind turbine work at a specified level, in spite of faults availability. This means that the 

repair requirement and off-time are reduced, the integrity of power generation process grew, 

and total cost is kept as low as possible [15,16]. 

Majority of the research and work in this field were stimulated by the rivalry between KK-

electronic a/c (its name is changed to “KK-Wind Solutions”) and Math Works companies in 

the period between 2009 and 2015. 

Recently, two structures for modelling wind turbine were introduced, inclosing LPV 

(Linear Parameter Varying) and vague T-S (Takagi – Sugeno) prototypes. It must be kept in 

mind that many reliable modelling packages for wind turbines are already there like FAST 

(Fatigue, structure, Aerodynamics and Turbulence) which was designed and built by NREL 

[17] and the 4.8 MW wind turbine model built by KK-electronic (KK-Wind Solution) by 

collaboration with Aalborg University [18]. 

1.2 Fault-Tolerant Control and Fault Diagnosis 

Terminology is to be elaborated in the following lines: 

- Fault: “An unpermitted deviation of at least one characteristic property or parameter 

of the system from the acceptable / usual / standard condition.” 

The difference between fault and failure can be drawn from below definition: 

- Failure: “A permanent interruption of a system’s ability to perform a required function 

under specified operating conditions.” 

Hence, error can be considered a variation of fault, and is defined: 

- Error: “A deviation between a measured or computed value (of an output variable) 

and the true, specified or theoretically correct value.” 
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All the above may happen in a technical system. A failure usually causes system 

shutdown, except if the failure is not in a critical system part.  

Faults, like failures, could be critical or non-critical. For example, 20% offset fault in wind 

measurement is not a severe fault, not like the same amount in pitch actuator. 

- Fault detection: “Determination of the faults present in a system and the time of 

detection” 

- Fault isolation: “Determination of the kind, location and time of detection of a fault. 

Follows fault detection.” 

- Fault identification: “Determination of the size and time-variant behaviour of a fault. 

Follows fault isolation.” 

- Fault diagnosis: “Determination of the kind, size, location and time of detection of a 

fault. Follows fault detection. Includes fault isolation and identification.” 
 

Fault detection turns out to be simplest yield, and that is not adequate, mostly fault 

isolation is required. 

Faults might be (non-critical faults) that don’t shut down the system or shutting the system 

off (critical faults). Advanced fault processing involves fault-tolerant techniques. Fault 

detection and isolation could be enough, but some other techniques may need its amount as 

well [19]. Fault direct reconstruction is the most important data in FTC. Full fault diagnosis 

includes decision making stage, if there is a fault, and what its kind is, and what response is.  

When fault is reconstructed, new parameters can make the system work well, but they may 

be needed to be reconfigured back to the original. 

For this purpose, a simple fault compensation approach is applied by subtracting the 

reconstructed faults taken from either the (faulty) inputs or outputs, i.e. 

𝑢 𝑐𝑜𝑟𝑟 =  𝑢 −  𝑓𝑎,       𝑦𝑐𝑜𝑟𝑟 =  (𝑦 +  𝑓𝑠)  −  𝑓𝑠 (1.1)  

As u and y denote the input and output vector, respectively. fa and fs denote the actuator 

and sensor faults, respectively. 

Above corrected inputs and outputs which work as virtual actuators and sensors, 

respectively, in a way that the original controller can still be used. This is a pragmatic method 

that doesn’t need extra or integrated design of the FTC. 
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The fault compensation in (1.1) is a strategy of no feedback usually, but it can have 

feedback that contrasts actual output to referential system which has no faults, and even 

defining this condition is unclear mostly. 

Fault diagnosis and fault tolerant control have many advantages [20]: 

• Avoid failures and faults damaging turbine parts by timely detection. 

• Reduce service costs by preventing functional parts replacement, by applying incident-

based service instead of periodical service. 

• Give remote diagnosis details to service teams. 

• Increase power generation as fault doesn’t stop turbine. 

An additional benefit is that, fault diagnosis gives operational advantages because it 

provides early capture of the fault, and this can make wind turbine safer and less costly.  

1.3 Motivation and Goal 

The wind turbine is a bulk power producer and needs large investment. Therefore, it 

should continue its operation despite the faults occurred at different operating conditions. 

Introduce an algorithm for (online/real-time) fault-tolerant control (AFTC) is a big challenge 

to detect, isolate and accommodate the fault/s in real-time to enable the wind turbine to 

overcome the occurred fault/s and continue its operation. Controlling the effects of the fault 

accommodation process on the performance level and the stability of the wind turbine is a big 

challenge too. 

1.4 Importance and Expected Impact 

System monitoring and fault-tolerant control is a promising subject for research. The 

proposed scheme in this research will contribute to this field of research. The expected impact 

of this research will lead to: 

1. Develop a new FTC algorithm to analyze the sensor faults and design a fault-tolerant 

monitoring and supervision system for the wind turbine. 

2. Increase the reliability of the wind turbines:  sending an alternative/estimated signal to 

the controller to enable the turbine to continue its operation with a small effect on 

performance level despite the occurred fault/s.  

3. Predict the sensors' faults in the wind turbine. 
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4. Reduce the maintenance cost and the downtime of the turbine. 

1.5 Methodology 

The Methodology of this research can be summarized as follows: 

• Study the wind turbine benchmark model. 

• Investigate the sensors and their faults on the operation of the wind turbines. 

• Applying a diagnosis technique, known fault detection and isolation (FDI) scheme will 

be used in the FDI module to detect and isolate the occurred fault/s during system (wind 

turbine) operation. 

• Introduce an online reconfiguration mechanism to accommodate the missing/faulty 

signals from sensors. 

• Test the proposed solution based on real data of the wind turbine using the 

Matlab/Simulink model. 

1.6 Outcomes and Deliverables 

The following results are expected at the end of this research: 

• Suggest a new approach for online fault-tolerant control, which has a realistic 

application in wind turbines. 

• Reduce some measurement components in wind turbine. The recommended FTC 

approach is able to substitute the redundant sensors signal with estimated ones. 

• Improve safety and reliability of the wind turbines, via achieving a high FTC operation. 
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Chapter Two  

                              Literature Review 

2.1 General Review 

Renewable energy sources have received large attention in the last decades due to the 

pollution effects and limited fuel resources. Wind turbines operate as a generator, which 

convert wind kinetic energy into mechanical energy through a rotating shaft with three pitch-

controlled blades. A distinct motor called pitch motor adjusts each blade pitch angle, i.e., wind 

turbine has three pitch motors. Yaw motor is used to rotate the shaft horizontally (around the 

vertical axis) according to the wind direction. The rotating shaft transmits mechanical energy 

to a generator through a gearbox. The generator is followed by a converter and high voltage 

transformer to transmit the produced electrical energy to the grid [18]. 

Fault-Tolerant Control (FTC) schemes are used to accommodate fault/s occurred in the 

system components during operation and maintains the system's stability with acceptable 

degradation in the system's performance.  FTC schemes are classified into active (AFTC) and 

passive (PFTC) schemes.   

The AFTC scheme has two essential components plus the controller. These components 

are, a fault detection and isolation (FDI) module and a reconfiguration mechanism, as shown 

in Figure 2.1. The role of the FDI is to discover and isolate the faults that occurs at different 

operating conditions and in different system's components. The reconfiguration mechanism -

in turn- tries to accommodate the fault/s and send an accommodated signal to the controller for 

the system to continue its operation regardless of the fault/s with a small effect on the system's 

performance level. 

The main disadvantage of AFTC schemes that their time response may be slow due to 

large computational processes especially with many simultaneous different and distributed 

faults. This drawback presents a challenge since a slow time response may impact the stability 

and reliability of system to be controlled. 

Since AFTC’s do control as per condition, they have algorithm to capture the status of the 

system. In fact, AFTC’s senses, isolates, and assesses the fault. Active fault detection sends 

extra signals to facilitate or enable fault detection. Fault isolation determines which part 

malfunctions and that is important to accommodate fault. Faults do not necessarily switch the 
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part off, and some of them are in a medium stage so they must be evaluated. Faults are either 

abrupt or incipient. An abrupt fault is detectable easily but it is more severe. 

PFTC schemes are offline fault detectors to accommodate only fixed predefined fault. 

Therefore, they have neither an FDI module nor a reconfiguration mechanism. Unlike AFTC, 

PFTC schemes are simple, fast, and have no time delay. They are also, flexible to a particular 

group of faults. In a sense, that the same controller is used either if there is or there isn’t a fault. 

In the design of PFTC’s, several performance measures are programmed for cases of fault and 

no-fault [21]. 

 
Figure 2.1: AFTC Structure [22].  

2.2 Fault Detection and Isolation 

There are so many methods for faults’ detection. The broadest categorization is into signal-

based and model-based methods. Signal-based are the only applicable methods when outputs 

measurement is done without measuring inputs. They include, for instance, periodic signals 

analysis (like maximum-entropy assessment) and machines vibrational analysis [23]. 

On the other hand, model-based measures inputs and outputs, considering standard 

reference for model-based fault discovery and isolation (FDI) methods [24]. 

Parameter estimation can be done using identification methods, also a data base can be 

established to compare system current behavior with the fault-free  zone. However, fault 

identification and isolation are not always possible; a common technique is the least-squares 

parameter estimation [25]. 
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Majority of model-based FDI methods depend on residuals calculation and evaluation 

which are defined as “the quantities that represent inconsistency between the actual system’s 

variables and the mathematical model’s" and "the respond to faults in distinguishing methods" 

[24].  
 

2.3 Fault Identification / Reconstruction 

Typically, Unknown Input Observers (UIO’s) are used for generating residuals but not 

direct fault estimates. In contrast, [26] introduced a special UIO for direct fault reconstruction, 

which gives excellent outcomes and depends on only one observer, unlike many other 

approaches that need an observers’ bank for different faults. Powerful existence conditions 

should be met for the proposed UIO. 

Another way of fault reconstruction is sliding mode observers [27-29]. It is a nonlinear 

technique used for observers as well as controllers. Its nonlinear switching term can keep 

motion on sliding surface [30]. 

For sliding mode observers, the equivalent output injection signal, which outlines the 

average operation of the switching term, can be estimated to result direct fault estimates. When 

compared, it is discovered that the sliding mode observer (SMO) works better than UIO when 

parametric uncertainty is there in the simulation, entailing that the robustness characteristics 

of the SMO are better. Moreover, SMO needs less strong needs structurally. 

SMO observer is best suited for linear systems, since nonlinear switching term only 

handles faults. For a highly nonlinear model like a wind turbine, a structure like the SMO 

doesn’t work properly, since sliding term catches nonlinear dynamics and system faults. 

As a result, a nonlinear extension of the SMO was added (using Takagi-Sugeno method). 

Thus, TS structure handles dynamics, and switching term handles faults. 

Because of switching term limitations, neither the SMO nor the TS SMO introduced in 

[31] can simultaneously reconstruct faults which have greatly varying order amount. An 

adjusted switching term for the TS SMO was proposed in [32]. 
 

2.4 Fault-Tolerant Control 

There are many different approaches to construct FTC. Those can be categorized into 

passive (PFTC) and active categories (AFTC). PFTC is built to achieve a certain performance 
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and to tolerate a certain class of faults, but its range is limited and it operates below 

optimization in fault-free case [33]. 

The FTC strategy is formed of two merged steps. The first one is fault detection and 

isolation (FDI), and the second one is the reconfiguration of the controller to befit fault in the 

process. The operation and stability of the FTC schemes rely on the precision and preparedness 

of the fault diagnosis technique in action.  

Consequentially, FTC can be applied in the case of fault to secure safe operation. FDI can 

be done by many methods which had a lot of improvements in the last two decades.  

There were a lot of research that was directed to the model and the observer-based fault 

diagnosis technique. [14,18, 22, 34-43].

2.5   Existing Fault Diagnosis and FTC Methods 

FTC avoids components failure from expanding to full system. Nevertheless, it passes 

some low performance conditions. For designing a PFTC, a satisfying behavior for the nominal 

control system must be accomplished as an elegant deterioration is permitted when fault is 

there. In [21], by creating dependence on two controllers. One controller output nothing as the 

control system senses nominal operation, and the second controller is equal to the nominal one. 

In the case of a fault, the first one works giving a signal to alter the control system. Other 

methods, as in [44], depend on a multi-objective control system. 

In an AFTC system, a fault diagnosis system is constructed. This needs a residual 

generator sensitive to internal faults not to changes coming from ambience. This can be done 

by parity space approaches where residual is decoupled from outside disturbance. 

One more way is to design a change detection algorithm, e.g., based on a CUSUM test, 

capable to spot a variance in signal mean value. Besides, Kalman filter methods can be applied 

by producing a description of the fault turn into part of the system model, and assessing the 

fault. Once the fault has been inspected; the AFTC is reconfigured. This might be to 

reconfigure the controller to depend on estimates in place of measurements. The AFTC system 

is reconfigured using supervisor, which picks one sensor from many, depending on fault sort 

[20]. 
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2.6  Fault Diagnosis and Fault-Tolerant Control of Wind Turbines 

Here, the current states of fault diagnosis and FTC of wind turbines are reviewed, by going 

through the literature in hand. Today, wind turbines have sensors for conditions and faults 

detection. The obtained data may then be used in predicting maintenance time. However, most 

monitoring systems use signals and vibration analysis in detection. [45]. 

In matter fact, only a small number of model-based fault diagnosis methods are applied 

for wind turbines; for example, fault diagnosis systems for pitch sensors and pitch actuators 

[46,47]. These diagnosis approaches evaluate parameters in the pitch system, and record if a 

fault has happened using these evaluations. The commonly used way is to distribute condition 

monitoring systems and turn off the wind turbine if a fault is detected. Anyway, in a few 

conditions ideas about fault naturalization have been introduced, but not examined or 

simulated. 

During last few decades, advanced FDI procedures for actuator and sensor faults were 

successfully executed in wind turbine simulation studies. In [84], blade root moment sensor 

faults and pitch actuator stuck faults can be sensed through robust H∞/H− observer. Fault 

amounts are then evaluated with a dynamical filter. For examining algorithms work, a 

linearized simulation model is applied. 

Bigger turbine sizes impose the need for redundancy in the components and the sensors 

for safety. An instance is the pitch system for manipulating rotor blade angle. For every blade 

in 3-blade rotor, separate pitch system is applied, so that is worst failure condition in pitch 

system, the other one or two would still have the ability to shut-off turbine. 

Adhering to extra safety provisions, redundancies entail extra  expenses and probably more 

turbine off-time due to faults in the redundant parts. The increase in safety may thus mean a 

loss of energy production and profit. One possible solution is to invest in  functional 

redundancies instead of hardware ones. Even when we decrease hardware redundancies, big 

size wind turbines are exposed to faults due to several reasons. Currently, many of these faults 

often cause turbine shutdowns, because of safety issues. Particularly in offshore wind turbines, 

this might force operator to accept the fact that some of the turbines are deactivated since access 

to them is very difficult due to harsh weather conditions. 

The continuous need for consistent power generation imposes need for integral fault 

diagnosis and FTC systems that keep the turbine running even when faults are there, probably 
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at less velocity, and simultaneously handling the rectification. Beside raising availability and 

declining turbine shut down time, intelligent fault diagnosis schemes could cancel the urge for 

extra hardware  abundance, if virtual sensors may partially substitute redundant hardware 

sensors. 

Complication in modern control systems and algorithms has led to continuous interest in 

fault diagnosis methods of systems. There have been many challenges in knowing fault 

diagnosis systems and how they add value to the control systems. There are three classification 

of fault diagnosis systems: model-based, hardware-based and history-based fault diagnosis 

systems. 

Large control systems are utilized to measure quality, safety, and functional reliability 

over time. Control systems components decay over time because of wear and interaction with 

ambience. Accordingly, it is a requirement for control systems to be capable to diagnose and 

fix faults disregarding their operational mode, either online or offline.  

2.7  FDIR and Residual Concept 

Fault diagnosis system’s main idea is to know the kind, size, and position of the fault, and 

also determining time of detection, according to the system’s measurements. A general scheme 

of model-based fault diagnosis is shown in Figure 2.2. Fault diagnosis is implemented through 

two stages: First, a signal called residual is initiated utilizing existent input–output 

measurements in the diagnosed system. When there are no faults in the system, residual signal 

is roughly zero, and other measurement values (variant from zero) indicate fault. Residual 

signal value might be of one fault (scalar) or multiple faults (vector). The type of the residual 

generator varies from an analytical mathematical model to a black-box model of the system. 

Decision making is done in the second stage to examine faults behind the residual signals. 

Furthermore, decision making mechanism ranges from threshold to complex statistical 

methods [48] . 
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Figure 2.2: General scheme of model-based fault diagnosis [48]. 

Fault detection, isolation, and reconfiguration (FDIR) is an essential subject in all 

engineering branches (chemical, aerospace, nuclear . . . etc.). FDIR is, as well, needed in 

applications built with high redundancy e.g. wind applications, since it is known for reliable 

and quick fault. 

The International Federation of Automatic Control (IFAC), defines “Fault” as an 

unpermitted deviation of at least one characteristic property or parameter of the system from 

the acceptable/usual/standard.  

Such malfunctions are expected to occur in the individual unit of the plants, sensors, 

actuators or the switching logic components. When an error occurs FDIR secures safe running 

of a system when through fault detection and isolation (FDI), and controller reconfiguration is 

response to fault.  

The FDI outcome will be one of two: either that there is some issue also it specifies the 

location of the fault, or that there is nothing wrong. Generally, FDI methods rely on 

redundancy, which can take form of a hardware redundancy or analytical redundancy as 

illustrated in Figure 2.3. The basic concept of hardware redundancy is to compare duplicative 

signals generated from several hardware, like measuring same signal emitted by two sensors. 

Amongst several techniques that are commonly used in hardware redundancy approach are the 

cross-channel monitoring (CCM) method, residual generation using parity generation 

(depending on sensor geometry or signal pattern), and signal processing methods like wavelet 

transformation, etc. [39], [49]. 
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Figure 2.3: Illustration of the concepts of hardware redundancy and analytical redundancy for FDI [49]. 

Analytical redundancy saves money when compared to hardware redundancy, since it 

doesn’t need adding extra hardware. It, basically, uses a mathematical model of the system 

along with estimation methods for FDI.  

Analytical redundancy can be generally divided into quantitative and qualitative model-

based methods. However, making it effective is a more difficult task due to the need to ensure 

it is robust enough and able to resist noise and disturbances.  

The qualitative model-based methods use artificial intelligence (AI) techniques, like 

pattern recognition, to catch differences between actual behavior and model-predicted one. On 

the other  hand, the quantitative model-based methods use explicit mathematical models and 

control theories to generate residuals for FDI. The thesis, however, focuses mainly on the 

quantitative model-based approach of FDIR.  

A general structure of an analytical redundancy-based (or model-based) FDIR system is 

illustrated in Figure 2.4. It consists of three steps: First is to generate a set of variables 

(residuals) using one or more residual generation filters. Residuals must ideally be roughly 

zero under ideal conditions (fault-free). To make them practical, they have to be prone to noise, 

disturbances, and model uncertainties and greatly sensitive to faults. Some FDIR schemes use 

many residual generation filters in parallel to achieve fault isolation. In these schemes, every 

filter is designed to be sensitive to a pre-selected set of faults. The second step is to decide if a 

fault has occurred (fault detection) and on the faults’ type (fault isolation). This is done using 
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statistical tools to check if the residuals have considerably deviated from zero. Finally, the 

controller is reconfigured online to respond to the detected faults [49]. 

 
Figure 2.4: Fault detection, isolation, and reconfiguration scheme [49]. 

Applying analytical redundancy approach, residuals are generated based on a 

mathematical model of the system. This mathematical model might be developed based on 

theoretical laws, or empirically based on experience. Practically, it can’t describe the system 

exactly due to errors. In addition, noise in practical systems result in residuals deviating from 

zero under no-fault conditions.  

There are generally two approaches to overcome this problem, shown as follows. 

1) Robust Residual Generation: A filter that is immune to noise and able to detect only 

noises. Examples of this approach are the fault detection filters [50- 55], the observer-based 

methods [56], [57], the parity relation methods [58], [59], the parameter estimation methods 

[60], [61], and Kalman filter-based methods [62]. 

2) Robust Residual Evaluation: A robust algorithm for testing residuals. The strategy relies 

on robust methods of detecting a change in signals corresponding to faults. The simplest 

decision rule is to decide a fault occurs when the value of a residual is above a pre-determined 

threshold. More complex decision rules may contain adaptive thresholds, or may use statistical 

decision theories like generalized likelihood ratio (GLR) test or sequential probability ratio test 

(SPRT) [63], [64], [65]. 
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The FDIR problem is a subject on which received significant interest by many authors. 

[63] Has introduced key concepts of analytical redundancy in model-based FDI. [57] Has 

presented a comprehensive survey of observer-based FDI methods. [61] Has introduced some 

basic fault detection methods, and gave examples of fault detections by parameter monitoring 

and special correlation methods. Many surveys of parity relation methods in FDI can be found 

in [59], [66] and [67]. Several publications have introduced comprehensive review of the 

concepts and applications of model-based FDIR methods [65], [68-71]. A three-part review 

paper [72-74] have concentrated mainly on FDI methods and applications in process chemical 

engineering. [75] Has reviewed numerical and artificial intelligence FDI methods. [76] Has 

introduced various model-based FDIR techniques.  

A switching fault-tolerant control (SFTC) strategy for a doubly-fed induction generator-

based wind turbine (DFIG-WT) subject to rotor and stator current sensor faults is proposed in 

[77]. A novel stator-current-loop vector control scheme is introduced for the regulation of 

DFIG-WT without involving rotor currents. This SFTC strategy switches between the rotor 

and stator current vector controllers via a switching logic based on Kalman filter-based fault 

detection and isolation (FDI) scheme. [78] Introduced a novel fault-tolerant cooperative 

control scheme based on an adaptive control reconfiguration approach that is augmented with 

an innovative control reallocation mechanism in a cooperative framework.  

A novel active fault-tolerant control (FTC) methodology for WT, which minimizes the 

economic cost of WT by achieving the two broad objectives: power maximization and fatigue 

reduction, possibly under the effect of torque bias faults in converters is proposed in [79]. The 

proposed FTC system is composed of two modules: fault detection and diagnosis (FDD), and 

controller reconfiguration (CR). The CR module using a model-predictive control (MPC) 

technique has been developed, where the primary issue is that the constraint set is not convex 

in decision variables.  

[80] Proposed a reliable load mitigation scheme, referred to as “fault-tolerant individual 

pitch control,” for individually adjusting the pitch angle of wind turbine blades in the presence 

of blade pitch actuator faults. [81] Introduced an adaptive sliding mode observer (ASMO)-

based approach for wind turbines subject to simultaneous faults in sensors and actuators. This 

ASMO enables the simultaneous detection of actuator and sensor faults without the need for 

any redundant hardware components. It also enables the accurate estimation and reconstruction 
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of the descriptor states and disturbances. Fault tolerance is achieved by implementing a signal 

correction scheme to recover the nominal behavior.  

2.8 Fault Diagnosis Methods Classifications 

There is large amount of literature about dynamic systems fault diagnosis. From a 

modelling point of view, some methods need accurate system models (plants), quantitative 

models or qualitative models. Anyway, some methods depend just on historic system data. 

Although fault diagnosis received considerable review, it is noted that classification of fault 

diagnosis methods mostly is not consistent. The reason is that researchers concentrate on a 

specific branch, like analytical models, of the big field of fault diagnosis. Figure 2.5 depicts 

this classification. Fault diagnosis methods are classified into three main categories: model-

based, hardware-based and history-based. 

A. Model-Based Fault Diagnosis 

These methods usually use a model developed based on basic understanding of plant 

or process physics. They are classified into qualitative or quantitative. 

• Qualitative methods.  

Qualitative model-based fault diagnosis is classified into abstraction hierarchy, fault 

trees, diagraphs and fuzzy systems. These methods utilize a model where the input–output 

relationship of the plant is expressed in terms of qualitative functions goes around different 

units in the process. 

• Quantitative Methods 

These methods utilize a model where the input– output relationship of the plant is 

coded in terms of mathematical functions. As shown in Figure 2.5, quantitative model-

based fault diagnosis is generally classified into analytical redundancy, parity space, 

Kalman filter (KF), parameter estimation and diagnostic observers.  

B. Diagnostic observers. 

In the fault diagnosis literature, different types of diagnostic observers for residual 

generation can be noticed, including the following: 

• Residual generation using Eigen-structure assignment. 

It separates directly the generated residual from disturbance (disturbance may not 

be separated from state estimation). 
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• Residual generation using unknown input observer (UIO).  

Its principle is to make the state estimation error decoupled from the unknown 

inputs (disturbances). 

• Residual generation using fault detection filter. 

 It is a full-state estimator with a special choice of the feedback gain matrix. 

• Residual generation using bilinear observer. 

 A special class of non-linear systems can be handled using bilinear observers. They 

are designed according to two approaches; the first one uses the Lyapunov method, 

whereas the second approach is uses techniques developed for linear UIOs. 

 

Figure 2.5: Classification of fault diagnosis methods [48] . 



19 
 

Analytical redundancy methods for fault detection and  identification use a modelled 

dynamic relationship between  system inputs and measured system outputs to form a residual 

process.  Nominally, faults are detected when the residual process is nonzero  only when there 

is a fault which is zero at other times. An example  of a residual process for an observable 

system while there is no noise is the innovations process of any  stable linear observer. A 

detection filter is a linear observer with the  gain constructed so that when a fault occurs, the 

residual responds  in a predetermined direction, thus activating simultaneous fault  detection and 

identification.  

Identifying the components at risk of failure and then modifying them is very important 

as the reduction of the incidence of software failure improves reliability. In fact, any violation 

of reliability will result in intolerable losses to the software system. one of the technologies 

used to improve the software system's reliability is Software fault tolerance. Software fault 

tolerance is used to detect an error occurring or has already occurred in the software or 

hardware in which the software resolves this error according to specifications. The ad-hoc 

method is based on hardware fault tolerance as the program versions are closely parallel with 

retrying the same operation in the hope that the problem will be resolved in the next attempt. 

In other words, software fault tolerance attempts to leverage the experiences to solve other 

problems. However, doing so produces a need for design variety to build a redundant system 

properly. 

The software carrier is called a module, and the module completes a specific and distinct 

function. When any module fails in the software system, the solution is to redundancy another 

module, which can replace the failed module to ensure the consistency of system operation. 

Therefore, the system with redundant modules will affect the system's performance and 

enhance the fault tolerance to ensure reliability. 

In some applications, the detection filter structure is sensitive to  small parameter variations 

because the eigenvectors of the observer are ill-conditioned. 

Detection filters form a class of linear observers that produce residuals with known and 

fixed directional characteristics  in response to a set of design fault directions. Practically, 

reliable fault isolation works  only when the detection space structure is insensitive to system 

parameter variations. A left-eigenvector assignment  approach is developed to allow for the 

application of existing results relating suprema controllability subspaces  and ill-conditioned 
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eigenvectors. Adjustments to the detection filter structure that produce improved eigenvector  

conditioning and sensitivity to system parameter variations are applied to an aircraft 

accelerometer fault detection filter [82] . 
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Chapter Three  

                     Wind Turbine Description 

This chapter aims to review wind turbine components studied in the thesis, and to elaborate 

how to control it to optimize the performance relying on the wind speed. Accordingly, a reference 

controller is designed following the wind turbine control rules. 

3.1 Wind Turbine Components 

Wind turbine components are basically introduced in this section. The wind turbine 

selected here is built by kk-electronic a/s (kk-Wind Solutions) applying Danish perspective, 

which forms the basis for contemporary turbine designs. Figure 3.1 shows the horizontal axis 

wind turbine utilizing three-bladed rotor with active yaw system that keeps the rotor directed 

upwind [83]. 

 
Figure 3.1: Horizontal-axis wind turbine parts and components [20]. 
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The main turbine components can be explained as [20]:  

• Anemometer which measures the wind speed. The turbine starts to rotate once speed 

hits a certain value (lower limit), and stops when it reaches a higher limit (cut-out at 

high speed). 

• Brakes: mechanical, hydraulic or electric and work like car brakes. 

• Gearbox: Connects low-speed shaft to high speed one, increasing generator speed to a 

value that can generate power. 

• Generator which converts kinetic rotational energy into electric energy. Its power can 

reach a maximum of 5 MW. 

• High-speed shaft which handles driving generator. 

• Hub and rotor blades: The hub link the rotor blades to the low-speed shaft. Pitching the 

blades is applied to increase the efficiency at low wind speeds and decrease efficiency 

in high wind speeds to prevent structural damage in the turbine. 

• Low-speed shaft which is responsible for connecting the rotor and gearbox. 

• Nacelle which is fastened at the top of the tower and it contains the gearbox, low- and 

high-speed shafts, generator, and brakes. 

• Tower which lifts the nacelle and the rotor. Taller tower produces more power because 

higher wind speeds occur at higher heights. 

• Wind vane which gets wind direction to make yaw mechanism able to make turbine 

normal to wind direction at all times. 

Yaw mechanism makes wind turbine blades normal to the wind direction using data from wind 

vane [84]. 

 

3.2 General Control Strategy 

Figure 3.2 shows the block diagram of wind turbine benchmark work. The components 

are shown in boxes. Blades absorb power by aerodynamic forces. Pitch angle is controlled by 

pitch system and this controls the power obtained. Drive train system links low speed rotor 

shaft to high-speed generator shaft, transferring the aerodynamic torque from rotor to 

generator. Generator is induction type having power electronics devices, and it can generate 

electricity and adjust its characteristics [85]. 
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Figure 3.2: Block diagram of control system for wind turbine (Benchmark Model). 

 

This part explains how to control variable-speed, variable-pitch wind turbine along a 

typical operating trajectory, and to go through control process variables. FTC and FDI actually 

depend on conditions of the closed-loop system. The control aims to increase power generation 

and reduce expenses which depend on operation conditions, so the turbine is following a 

specific trajectory, as shown in Figure 3.3. This trajectory is generated using a control strategy 

shown in Figure 3.4, exhibiting the control signals and rotor speed for producing the targeted 

output power. Turbine produces power only in control modes 1 & 2 having limited speeds. 

Below cut-in there is no generation because it is not feasible, and above cut-out it is stopped 

to prevent turbine damage [20]. 

 
Figure 3.3: Typical power curve for the wind turbine [18]. 
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Figure 3.4: Typical control strategy for applying the typical power curve [20]. 

- Control Mode 1 is between the cut-in wind speed (3 m/s), and the rated wind speed 

(12.5 m/s). Power optimization is achieved here by varying the generator torque to 

optimize it between blade tip speed and wind speed. So, aerodynamics efficiency is 

maximized. 

- Control Mode 2 is between the rated wind speed, and the cut-out wind speed (25 m/s). 

It is maintained at rated value to avoid damage and noise. Two separate sets of 

controllers are used (for two regions) and interconnected by transfer mechanism. Figure 

3.5 exhibits a block diagram of a reference controller used to maintain a frame of 

reference; it complies with kk-electronics. 

Reference controller uses two different controllers: one for the partial load region and one 

for the full load region. At speed below rated, an optimal pitch angle is controlled to optimize 

tip-speed ratio by controlling the generator torque, i.e., setting the two switches in Figure 3.5 

to be in Position I [20]. 
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Figure 3.5: Reference controller structure [20]. 

Above rated speed, output power is maintained at a certain value by pitching the rotor 

blades, while the power controller function is solving steady-state errors by controlling the 

generator torque. i.e., setting the two switches in Figure 3.5 to be in Position II. A transfer 

mechanism is used to jump between the two control zones [20]. 

3.3  Wind Turbine Parts Modelling 

Wind turbine parts models are presented in this section [18]. 

A. Wind Model 

The combined wind (VW) model is given by: 

𝑉𝑤(𝑡)  =  𝑉𝑚(𝑡)  +  𝑉𝑠(𝑡)  +  𝑉𝑤𝑠(𝑡)  +  𝑉𝑡𝑠(𝑡) (3.1) 

As in the above equation four parts are the main components that wind model consists of, 

these are: 

- Vm (t) mean wind (slow wind variations): a set of measured wind data process caused 

slowly varying wind sequence by using low pass filter. 

- Vs (t): stochastic part which is modelled by Kaimal filters. 

- Vws (t) wind shear this happens from wind energy lost at the surface of earth causes 

wind speed increases as the distance to the earth surface increases, which is given by: 
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𝑣𝑤𝑠,𝑖(𝑡) =
2𝑣𝑚(𝑡)

3. 𝑅2 . (
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6. 𝐻3 . 𝑋3) (3.2) 

Where: 

• 𝑥 = cos 𝜃𝑟∗ (𝑡) where 𝜃𝑟∗  is the angular position of the three blades as below: 

o 𝜃𝑟1(𝑡) = 𝜃𝑟(𝑡)  

o 𝜃𝑟2(𝑡) = 𝜃𝑟(𝑡) +
2

3
𝜋  

o 𝜃𝑟3(𝑡) = 𝜃𝑟(𝑡) +
4

3
𝜋 

• α and H are two aerodynamic parameters. 
 

- 𝑉𝑡𝑠(𝑡) tower shadow which is given by: 

𝑣𝑡𝑠,𝑖 =
𝑚. �̅�𝑟,𝑖(𝑡)
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3
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where: 

o The function floor (x) is the largest integer not greater than x.  

o r0 is the radius of the blade hub.  

o k is an aerodynamic parameter. 
 

B. Blade and Pitch Model 

The model is consisting of a combination of two parts, which are: 

1. Aerodynamic Model and valid for relatively small deviations between the pitch 

angles and is given by: 

𝜏𝑟(𝑡) = ∑
𝜌𝜋𝑅3𝐶𝑞(𝜆(𝑡), 𝛽𝑖(𝑡))𝑣𝑤,𝑖(𝑡)2

61≤𝑖≤3
 (3.4) 
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2. Hydraulic Pitch System Model which is a piston servo system modelled by a second-

order transfer function and is given by: 

𝛽(𝑠)

𝛽𝑟(𝑠)
=

𝜔𝑛
2

𝑠2 + 2. 𝜁𝜔𝑛. 𝑠 + 𝜔𝑛
2 

(3.5) 

As the pitch references is changed the sensor fault modelled accordingly and is 

given by the below equation [18]: 

𝛽r,f,i[𝑛] = 𝛽𝑟,𝑖 −
∆𝛽𝑖,𝑚1[𝑛] + ∆𝛽𝑖,𝑚2[𝑛]

2
 (3.6) 

Where 𝛽r,f,i[𝑛] is the new pitch reference in which the sensor fault is contained, and 

𝑖 ∈  {1,2,3} 

C. Drive Train Model 

A two-mass drive train model can be used: 

𝐽𝑟�̇�𝑟(𝑡) = 𝜏𝑟(𝑡) − 𝐾𝑑𝑡𝜃∆(𝑡) − (𝐵𝑑𝑡 + 𝐵𝑟)𝜔𝑟(𝑡) +
𝐵𝑑𝑡

𝑁𝑔
𝜔𝑔(𝑡) 

(3.7) 

𝐽𝑔�̇�𝑔(𝑡) =
𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔
𝜃∆(𝑡) +

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
𝜔𝑟(𝑡) − (

𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔
2 + 𝐵𝑔) 𝜔𝑔(𝑡) − 𝜏𝑔(𝑡) 

(3.8) 

�̇�∆(𝑡) = 𝜔𝑟(𝑡) −
1

𝑁𝑔
𝜔𝑔(𝑡) 

(3.9) 

Where:  

- 𝐽𝑟 is the moment of inertia of the low-speed shaft 

- 𝐾𝑑𝑡 is the torsion stiffness of the drive train 

- 𝐵𝑑𝑡 is the torsion damping coefficient of the drive train 

- 𝐵𝑔 is the viscous friction of the high-speed shaft 

- 𝑁𝑔 is the gear ratio 

- 𝐽𝑔 is the moment of inertia of the high-speed shaft 

- 𝜂𝑑𝑡 is the efficiency of the drive train 

- 𝜃∆(𝑡) is the torsion angle of the drive train 
 

 

 

 

 

 

 

 



28 
 

D. Generator and Converter Model 

The generator and converter are modelled by a first-order transfer function as: 

𝜏𝑔(𝑠)

𝜏𝑔,𝑟(𝑠)
=

𝛼𝑔𝑐

𝑠 + 𝛼𝑔𝑐
 

(3.10) 

where αgc is the generator and converter model parameter. 
 

The generator output power is given by: 

𝑃𝑔(𝑡) = 𝜂𝑔𝜔𝑔(𝑡)𝜏𝑔(𝑡) 
(3.11) 

where 𝜂𝑔 is the generator efficiency. 

 

E. Controller 

Controller will happen in discrete time with a sample frequency at 100 Hz. Later on, all 

time dependent variables are indicated as discrete-time variables. 

1. The controller starts in mode 1. 

2. The control mode switches from mode 1 to 2 if: 

𝑃𝑔[𝑛] ≥ 𝑃𝑟[𝑛] ∨ 𝜔𝑔[𝑛] ≥  𝜔𝑛𝑜𝑚 

where 𝜔𝑛𝑜𝑚 is the nominal generator speed.  

3. The control mode switches from mode 2 to mode 1 if: 

𝜔𝑔[𝑛] <  𝜔𝑛𝑜𝑚 −  𝜔𝛥 

where ωΔ is a small offset subtracted from the nominal generator speed to avoid the 

switching between the two control modes all the time. 
 

▪ Control Mode 1:  The reference torque to the converter τg, r is as follows: 

𝜏𝑔,𝑟[𝑛] = 𝐾𝑜𝑝𝑡 (
𝜔𝑔[𝑛]

𝑁𝑔
)

2

 (3.12) 

𝐾𝑜𝑝𝑡 =
1

2
𝜌𝐴𝑅3

𝐶𝑝𝑚𝑎𝑥

𝜆𝑜𝑝𝑡
3  

(3.13) 

 

𝜆𝑜𝑝𝑡 is found at the optimum point in the power coefficient (Cp) mapping of the wind turbine. 

This optimal value is reached by setting the pitch reference to zero (βr [n] = 0). 

▪ Control Mode 2: The major control actions in this mode is trying to keep 𝜔𝑔[𝑛] at 

𝜔𝑛𝑜𝑚. 
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𝛽𝑟[𝑛] = 𝛽𝑟[𝑛 − 1] + 𝑘𝑝𝑒[𝑛] + (𝑘𝑖 ∗ 𝑇𝑆 − 𝑘𝑝)𝑒[𝑛 − 1] 
(3.14) 

𝑒[𝑛] = 𝜔𝑔[𝑛] − 𝜔𝑛𝑜𝑚 
(3.15) 

The converter reference is used to restrain fast disturbances by 

𝜏𝑔,𝑟[𝑛] =
𝑃𝑟[𝑛]

𝜂𝑔𝑐 ∗ 𝜔𝑔[𝑛]
 

(3.16) 

F. Sensors 

The combination of actual variable value and stochastic noise is used to model each 

sensor. Mean value and the variance of noise for the various measurements are as follows: 

1. 𝑚𝑤, 𝜎𝑤 (wind speed - 𝑣𝑤). 

2. 𝑚𝛽, 𝜎𝛽 (pitch angle - 𝛽). 

3. 𝑚𝜔𝑟, 𝜎𝜔𝑟 (rotor speed – ωr). 

4. 𝑚𝜔𝑔, 𝜎𝜔𝑔 (generator speed – ωg). 

5. 𝑚𝜏𝑔, 𝜎𝜏𝑔 (generator torque – τg). 

6. 𝑚𝑃𝑔, 𝜎𝑃𝑔 (generator power - Pg). 

 

3.4  Benchmark Model   

Several researches have recently tried their FDI methods on the wind turbine benchmark 

model first introduced in [14] and later described in more detail in [18].  It is a reduced-order 

model executed in MATLAB/Simulink and it includes a torsional-flexible drivetrain plus delay 

models for pitch angle and converter dynamics. Unlike other models, degrees of freedom for 

tower and blades are not there. The benchmark model contains a group of pre-defined actuator 

and sensor faults plus detection needs [86]. 

Another feature that is worth listing regarding the reduced-order benchmark model in 

[14,18] is that a double redundancy is supposed for all sensors (rotor speed, generator speed, 

pitch angles), and in the sensor fault scenarios just one of the two sensors for one amount is 

influenced by a fault at a time. This means in case of a fault in one rotor speed measurement, 

there is one more right rotor speed sensor available, equally for generator speed and pitch angle 
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measurements. The double sensor redundancy assumption in the benchmark model thus 

constitutes a considerable indulgence of the FDI demands.  

The aerodynamic characteristics of the blade can be measured with 𝐶𝑝 (𝛽, 𝜆) – power 

coefficient, 𝐶𝑞(𝛽, 𝜆) – torque coefficient and 𝐶𝑡(𝛽, 𝜆) – thrust coefficient. The mentioned 

coefficients are functions of 𝛽, i.e., blade pitch angle and 𝜆, i.e., tip speed ratio having the 

formula of 𝜆 =  𝑅.
𝜔𝑟

𝑣𝜔
, where 𝑅 is blade length (impeller radius), 𝜔𝑟 is blade rotor angular 

speed and 𝑣𝜔 is the effective wind speed at the rotor plane. These coefficients are usually there 

as numerical default or retrieval info or empirical formulas for a specific blade profile. Figure 

3.6 shows torque coefficient of the benchmark model [18]. 

 
Figure 3.6: Torque coefficient "𝐶𝑞 (𝛽,λ)" of the benchmark model [18]. 

 

3.4.1 Model Parameters 

The parameters of the benchmark model are listed in tables (3.1-3.6) [18]. 

Table 3-1: Wind model parameters. 

𝒓𝟎 H α 

1.5 m 81 m 0.1 
 

      Table 3-2: Blade and pitch model parameters. 

nω ζ ρ R 

11.11 
rad

𝑠
 0.6 1.225 

kg

𝑚3
 57.5 m 

n3ω 3ζ n2ω 2ζ 

3.42 
rad

𝑠
 0.9 5.73 

rad

𝑠
 0.45 
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Table 3-3: Drive train model parameters. 

Kdt Ng Bg Br Bdt 

2.7. 109 
𝑁𝑚

𝑟𝑎𝑑
 95 45.6  

Nms

𝑟𝑎𝑑
 7.11  

Nms

𝑟𝑎𝑑
 775.49 

𝑁𝑚𝑠

𝑟𝑎𝑑
 

 

Jr Jg ηdt2 ηdt 

55. 106 kg. 

m2 

390 kg. 

m2 
0.92 0.97 

 

 

Table 3-4: Generator and Converter  

model parameters. 

gcη gcα 

0.98 50 
rad

𝑠
 

 

Table 3-5: Controller parameters. 

rP ω∆ nomω pK iK optK 

W 64.8. 10 4 
𝑟𝑎𝑑

𝑠
 162 

𝑟𝑎𝑑

𝑠
 4 1 1.2171 

 

Table 3-6: Sensors model parameters. 

ωgσ mωg ωrσ ωrm wσ wm 

0.05 
𝑟𝑎𝑑

𝑠
  0 

𝑟𝑎𝑑

𝑠
 0.025 

𝑟𝑎𝑑

𝑠
 0 

𝑟𝑎𝑑

𝑠
 0.5 

𝑚

𝑠
 1.5 

𝑚

𝑠
 

βσ βm Pgσ Pgm τgσ τgm 
o0.2 o0 W 3101.  0 W 90 Nm 0  Nm 

 

 

3.4.2 Faults Description 

Table 3-7 illustrate the faults to be applied on the benchmark model. This table classifies 

the faults regarding their locations, class, type, value, and time of development. Each fault 

will be applied alone on the benchmark model to study the effects of each fault on the 

performance on wind turbine. 

Table 3-7: The faults scenario applied on the benchmark model. 

Fault Location Fault # 
Fault 

Class 
Fault Type & Value 

Fault Time 

& Duration 

Generator Speed 

Measurement 
F1 

Sensor 

Faults 

constant ωg,m 

step 
-20 rad/sec 

2000-3500 s 

Rotor Speed 

Measurement 
F2 

constant ωr,m 

step 
-0.32 rad/sec 

Pitch Position 

Measurement 

F3 constant β1,m 5o 

F4 constant β2,m 10o 

F5 constant β3,m 15o 
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Chapter Four  

                                  Simulation Results 

This chapter shows the corresponding effects of the different sensor faults on the performance 

of wind turbine by applying these faults separately on the wind turbine benchmark model. 

4.1  Wind speed profile 

Figure 4.1 shows wind speed profile applied on the benchmark model. This profile 

consists of real wind speed data that was collected and tested on this model. 

 

Figure 4.1: wind speed profile applied on the benchmark model. 

4.2 Controller Behavior 

Figure 4.2 shows switching behavior of the controller between the two control modes. 

Value of “0” represents “control mode 1” which is power optimization mode. The power is 

optimized in this mode as long as wind speed is less than 12.5 m/s. The other control mode 

(which is illustrated by the value of “1”) is “control mode 2” which represents power 

reference following mode. In this mode, the power is maintained at the rated value when 

wind speed is between 12.5 – 25 m/s. it is worth mentioned that this controller behavior is at 

the healthy operation (without applying any faults). When faults exist, this behavior may 

change. 
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Figure 4.2: Controller switching behavior between the two control modes. 

4.3 Generator Speed Sensor Fault 

Fault 1 represents a constant step fault in the generator speed measurement, i.e.  the 

value of measured ωg is not correct. Figure 4.3 shows ωg measurement during the whole 

simulation time without and with applying fault 1. Faulty step value of ωg measurement -20 

rad/sec during the unified faults time (2000 – 3500 s). 

 
Figure 4.3: ωg measurement without and with applying fault 1. 
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Figure 4.4 shows switching behavior of the controller between the two control modes 

during fault occurrence. Controller behavior has no changes compared to the healthy 

behavior.  

 
Figure 4.4: Controller switching behavior between the two control modes during fault 1. 

Figure 4.5 shows the values of generated power (Pg) without and with applying fault 1. 

It is obvious that it is decreased as ωg decreased, generated power reduction is about 12%. 

The effects of this fault on the generated power are logical and justified since the generator 

speed is reduced by about 14%. 

 
Figure 4.5: Pg measurement without and with applying fault 1. 
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4.4 Rotor Speed Sensor Fault 

Fault 2 represents a constant step fault in the rotor speed measurement, i.e.  the value of 

measured ωr is not correct. Figure 4.6 shows ωr measurement (shaft speed measurements) 

during the whole simulation time without and with applying fault 2. The faulty step value is 

about -0.3 rad/s which represents about 18% of the steady state healthy value. The time 

duration of all faults is unified (between 2000 – 3500 s).  

 
Figure 4.6: ωr measurement without and with applying fault 2. 

Figure 4.7 shows switching behavior of the controller between the two control modes 

during fault occurrence. Controller stay at mode 1 (without any switching) during the whole 

fault duration.  
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Figure 4.7: Controller switching behavior between the two control modes during fault 2. 

Rotor torque is strongly affected by the faulty rotor speed. Figure 4.8 shows that rotor 

torque magnitude is decreased to 27% of its magnitude at the healthy situation. 

 
Figure 4.8: τr measurement without and with applying fault 2. 

Figure 4.9 shows generator speed profile of the wind turbine model. It is noticed that the 

reduction percentage is the same as in rotor torque. The reduction behavior is severe and 

follows the occurred reduction of rotor speed. 
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Figure 4.9: ωg measurement without and with applying fault 2. 

Generated torque is also strongly affected. It decreased by 83% compared to its steady 

state healthy value as shown in Figure 4.10. It is noticed that generated torque available 

during fault existence is 17% whereas rotor torque available value was 27% during fault 

existence. 

 
Figure 4.10: τg measurement without and with applying fault 2. 

Reduction in both rotor speed and rotor torque will have a strong negative impact on the 

generated power which is the output of the whole wind turbine. This is clearly seen in Figure 

4.11. Generated power is decreased from 4.8 MW (rated power) to about 0.5 MW due to 

fault existence, i.e., just 10% of the generated power is available during fault time. 
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Figure 4.11: Pg measurement without and with applying fault 2. 

 

4.5 Pitch Position Sensor Fault (1st Blade) 

Fault 3 is applied on the first pitch angle (β1) with a constant fault value (5o) during the 

unified fault duration (2000 – 3500 s). Figure 4.12 shows switching behavior of the controller 

between the two control modes during fault occurrence. Controller behavior has no changes 

compared to the healthy behavior.  

 
Figure 4.12: Controller switching behavior between the two control modes during fault 3. 
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Figure 4.13 shows a little effect of this fault on rotor speed. This effect represents about 

5% reduction (in average) during fault duration period. 

 
Figure 4.13: ωr measurement without and with applying fault 3. 

Rotor torque is also slightly affected with the same reduction behavior of rotor speed as 

shown in Figure 4.14.  

 
Figure 4.14: τr measurement without and with applying fault 3. 

Figures 4.15 and 4.16 show that generator speed and generator torque behaviors are 

typically same as rotor speed behavior during fault duration time. Fault occurrence cause a 
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reduction of about 4% in generator speed whereas generator torque is reduced by about 6% 

(in average). 

 
Figure 4.15: ωg measurement without and with applying fault 3. 

 
Figure 4.16: τg measurement without and with applying fault 3. 

Consequently, generated power is negatively affected during the fault duration time. 

Generated power reduction reaches to 10% at the middle of fault duration time as shown in 

Figure 4.17. Generated power behaves same as rotor speed, generator speed, and generator 

torque during fault occurrence. 
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Figure 4.17: Pg measurement without and with applying fault 3. 

 

4.6 Pitch Position Sensor Fault (2nd Blade) 

Fault 4 is applied on the second pitch angle (β2) with a constant fault value (10o) during 

the unified fault duration (2000 – 3500 s). Figure 4.18 shows switching behavior of the 

controller between the two control modes during fault occurrence. Controller behavior shows 

one switching action between the two control modes compared with 3 switching times during 

the healthy behavior. 

 

Figure 4.18: Controller switching behavior between the two control modes during fault 4. 
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Figure 4.19 shows a significant effect of this fault on rotor speed. This effect represents 

about 8% reduction (in average) during fault duration period. 

 
Figure 4.19: ωr measurement without and with applying fault 4. 

Rotor torque is also s affected significantly by fault 4. Rotor torque reduction reaches to 

16% at sometimes during fault occurrence time as shown in Figure 4.20.  

 
Figure 4.20: τr measurement without and with applying fault 4. 

Figures 4.21 and 4.22 show that generator speed and generator torque behaviors are 

typically same as rotor speed behavior during fault duration time. Fault occurrence cause a 
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reduction of about 10% in generator speed whereas generator torque is reduced by about 

18% (in average). 

 
Figure 4.21: ωg measurement without and with applying fault 4. 

 
Figure 4.22: τg measurement without and with applying fault 4. 

Generated power is also affected during the fault duration time. Generated power 

reduction reaches to 25% at some fault duration times as shown in Figure 4.23. Generated 

power behaves same as rotor speed, generator speed, and generator torque during fault 

occurrence. 
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Figure 4.23: Pg measurement without and with applying fault 4. 

 

4.7 Pitch Position Sensor Fault (3rd Blade) 

Fault 5 is applied on the third pitch angle (β3) with a higher constant fault value (15o) 

during the unified fault duration (2000 – 3500 s). Figure 4.24 shows switching behavior of 

the controller between the two control modes during fault occurrence. Controller behavior 

also shows 3 switching actions between the two control modes but at different times 

compared to the controller healthy behavior. 

 

Figure 4.24: Controller switching behavior between the two control modes during fault 5. 
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Figure 4.25 shows more significant effect of this fault on rotor speed. This effect 

represents about 15% reduction (in average) during fault duration period. 

 
Figure 4.25: ωr measurement without and with applying fault 5. 

Rotor torque is also affected significantly but in a non-uniform manner when the fault 

starts and ends as shown in Figure 4.26. Rotor torque drops sharply when the fault starts and 

increases sharply when the fault ends. Other than the fault period limits, rotor torque dropped 

in a predicted manner as previous reduction behaviors. Rotor torque reduction reaches to 

28% at the middle of fault occurrence time. 

 
Figure 4.26: τr measurement without and with applying fault 5. 

Figures 4.27 and 4.28 show that generator speed and generator torque behaviors are 

typically same as rotor speed behavior during fault time. Fault occurrence cause a reduction 
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of about 13% in generator speed whereas generator torque is reduced by about 25% (in 

average). 

 
Figure 4.27: ωg measurement without and with applying fault 5. 

 
Figure 4.28: τg measurement without and with applying fault 5. 

Consequently, generated power is highly affected during the fault time. Generated power 

dropped from 4.7 MW to 2.6 MW at sometimes during the fault occurrence, i.e., 45% 

reduction in power generated as shown in Figure 4.29. In average, power generated is 

decreased by 35% during fault occurrence time. Power generated behaves same as rotor 

speed, generator speed, and generator torque during fault occurrence. 
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Figure 4.29: Pg measurement without and with applying fault 5. 

 

4.8 Concluding Remarks 

It is obvious from the results above that the sensors' faults harm the performance of the 

wind turbine. Therefore, integration of fault diagnosis and fault-tolerant control in the wind 

turbine systems will play an important role to improve the output of the turbine and also in 

on-time monitoring of the turbine behavior. The developed scheme should overcome the 

sensor faults and replaced the sensor's faulty measurements with the correct ones under the 

constraint that the fault-tolerant control scheme will not affect the safe operation of the 

turbine. 
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Chapter Five  

                        Detection Filter and FTC Algorithm 

This chapter will deal with the sensors faults detectability process and the proposed FTC 

algorithm in order to reconstruct the missing measurements signals. 

5.1 Detection Filter Formulation 

Recall the state space representation of a linear time-invariant system: 

�̇� = 𝑨𝒙 + 𝑩𝒖       (5.1a) 

𝒚 = 𝑪𝒙 + 𝑫𝒖 (5.1b) 
 

Where: 

- x = state vector = [ωg, ωr, β1, β2, β3]
T 

- u = input vector 

- y = output vector 

- A = system matrix 

- B = input matrix 

- C = output matrix 

- D = feedthrough matrix 

Consider a full order observer of the form [87]: 

�̂� = 𝑨�̂� + 𝑩𝒖 − 𝑳(𝒚 − �̂�) (5.2a) 

�̂� = 𝑪�̂� + 𝑫𝒖 (5.2b) 
 

Where: 

- �̂� =  state estimation  

- �̂� =  output estimation 

- 𝑳 =  observer matrix 

The state estimation error: 𝒆 = 𝒙 − �̂� 

The state estimation error: �̇� = �̇� − �̂̇� 

The residual: 𝒓 = 𝒚 − �̂� 

 

When there is no disturbances or modelling errors, residual will be nonzero only if there are 

one or more faults in the system, i.e., the fault/s is/are detected by the detection filter (a full-order 

observer). It follows that the stable observer can detect the fault/s by only monitoring the residual, 

and when this residual deviates from zero, a fault has occurred.  
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5.2 Residual Evaluation and Threshold Setting 

After detection filter have been formulated, evaluation of the resulting residual signal become 

the next step. The threshold setting should be also defined in order to achieve an accurate detection 

process. Different techniques could be used for evaluation and defining threshold setting. In this 

thesis, RMS technique with a moving window is used for residual signals evaluation.  

A. Residual Evaluation  

RMS value of the residual signal  𝒓, for the discrete time case, is defined by [88]: 

(7.1) . 

(7.2) . 

𝐽𝑅𝑀𝑆 = ‖𝑟(𝑘)‖𝑅𝑀𝑆 = (
1

𝑁
∑‖𝑟(𝑘 + 𝑗)‖2

𝑁

𝑗=1

)

1/2

 (5.3) 

 

𝐽𝑅𝑀𝑆   measure the average energy of the residual signal  𝒓 over the interval (k, k+N). 

B. Threshold setting  

threshold determination is to evaluate the tolerance limit for system disturbances (mainly 

sensors disturbance) during the healthy (fault-free) operation. In this thesis, the threshold is 

considered as the maximum effect of system disturbances on the residual signal in the healthy 

(fault-free) operation.  

Suppose that 𝒅𝒓 is bounded by and in the sense of: 

‖𝑑𝑟‖𝑅𝑀𝑆 ≤ 𝛿𝑑 
 

(5.4) 

where 𝜹𝒅 is bounded of system disturbances (mainly sensors disturbances). 

Then the threshold  𝑱𝒕𝒉,𝑹𝑴𝑺  is defined by: 

𝐽𝑡ℎ,𝑅𝑀𝑆 = 𝑠𝑢𝑝 𝐽𝑅𝑀𝑆

‖𝑑𝑟‖𝑅𝑀𝑆 ≤  𝛿𝑑

𝑓 = 0

 (5.5) 

The detection logic then becomes: 

𝑱𝑹𝑴𝑺   ˃  𝑱𝒕𝒉,𝑹𝑴𝑺    ➔   Alarm, a fault is detected 

                               𝑱𝑹𝑴𝑺  ≤  𝑱𝒕𝒉,𝑹𝑴𝑺     ➔   No alarm, fault-free 
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C. Simulation Results 

   This subsection shows numerical simulation values of state space matrices, observer 

parameters, the numerical threshold value (in fault-free conditions), and numerical residual 

values for all state variables [ωg, ωr, β1, β2, β3].  

1. State space and observer matrix parameter 

▪ Blade and pitch subsystem: 

The state-space representation of the blade and pitch subsystem is driven from 

Eq. (3.5), the numerical values of this subsystem are as follows: 

𝐴𝑝𝑏 = [
−13.3320 −123.4321

1.00 0
] 

𝐵𝑝𝑏 = [
1
0

] 

𝐶𝑝𝑏 = [0 123.4321] 

𝐷𝑝𝑏 = 0 

𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒𝑠 =  [−3 −4] 

𝐿𝑝𝑏  =  [
−0.2189
−0.0513

] 

 

▪ Drive train subsystem: 

▪ The state-space representation of the drive train subsystem is driven from Eqs. 

(3.7)-(3.9), the numerical values of this subsystem are as follows: 

𝐴𝑑𝑑𝑡 = 10000 ∗ [
−0 0 −0.0049
0 −0 7.0688

0.0001 −0 0
] 

𝐵𝑑𝑑𝑡 = [
0 0
0 −0.0026
0 0

] 

𝐶𝑑𝑑𝑡 = [
1 0 0
0 1 0

] 

𝐷𝑑𝑑𝑡 = [
0 0
0 0

] 
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𝐸𝑖𝑔𝑒𝑛 𝑉𝑎𝑙𝑢𝑒𝑠 =  [−0.1 −0.2 −0.3] 

𝐿𝑑𝑑𝑡  =  [
−0.0643 −0.0003
524.6209 0.5472

1.0011 −0.0105
] 

It is important to mention here that the linearized subsystems of the wind turbine are 

of 2nd and 3rd order which enable it to be suitable for online implementation.  

Figure 5.1 shows the numerical threshold value during fault-free operation which is 

equal 1.6, this value expressed system disturbances (mainly sensors disturbance). 

 

                   Figure 5.1: the threshold value during fault-free operation. 

Figure 5.2 show the residual value during fault 1 occurrence (when ωg is faulty). The 

residual value is more than 100 times of threshold value, i.e., easy and direct fault detection. 

 

Figure 5.2: Residual value during fault 1 occurrence (when ωg is faulty). 

Figure 5.3 show the residual value during fault 2 occurrence (when ωr is faulty). The 

residual value is completely above the threshold value, i.e., the fault will be easily detected. 
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Figure 5.3: Residual value during fault 2 occurrence (when ωr is faulty). 

Figure 5.4 show the residual value during fault 3 occurrence (when β1 is faulty). The 

residual value is more than 30 times of threshold value, i.e., easy and direct fault detection. 

 

Figure 5.4: Residual value during fault 3 occurrence (when β1 is faulty). 

Figure 5.5 show the residual value during fault 4 occurrence (when β2 is faulty). The 

residual value is more than 60 times of threshold value, i.e., easy and direct fault detection. 
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Figure 5.5: Residual value during fault 4 occurrence (when β2 is faulty). 

Figure 5.6 show the residual value during fault 5 occurrence (when β3 is faulty). The 

residual value is about 100 times of threshold value, i.e., easy and direct fault detection. 

 

Figure 5.6: Residual value during fault 5 occurrence (when β3 is faulty). 

 

Figure 5.7 shows the speed of fault detection for faulty generator speed measurement 

(fault occurs at 2000 sec. and detected at 2000.05 sec.) The speed of fault detection for 

generator speed measurement, rotor speed measurement, and pitch angle faults was 47-51 

msec. This high speed of fault detection gives the proposed scheme the power of the online 

quick reaction for any sensor fault under consideration.  
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Figure 5.7: Fault detection rate. 

5.3  AFTC Algorithm 

Figure 5.8 shows the proposed AFTC algorithm structure, which is the main contribution of 

this thesis. The algorithm shows how to isolate and reconstruct the faulty sensor signals in real 

time simply, effectively, and within few seconds. Both of the real sensor measurements and the 

accommodated ones are considered by the actions of the AFTC Algorithm. The accommodated 

measurements resources are from the same turbine’s sensors with predefined built-in computation, 

or from the corresponding sensors of other turbines that are in the same wind farm zone. 

The supervisory block compares the two measurements to detect the fault and isolate the faulty 

sensors. In matter fact, the wind turbine is maintained in a continuous correct operation whenever 

a fault is detected by the adoption of the reconstructed signals by the supervisory block. The AFTC 

algorithm steps can be summarized as follows:   

AFTC Steps 

• Step 1: Evaluate the residual signal based on (5.3).  

• Step 2: Detect the fault based on (5.5) and the decision logic. 

50 [ms] 
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• Step 3: Estimate the accommodated signal using other sensors’ measurements 

of the same wind turbine if possible, or using the corresponding sensors’ 

measurements of the near turbine in the same zone of the wind farm.  

• Step 4: If no fault is detected, then sensors measurements will be fed back to 

the closed-loop controller.  

• Step 5: If a fault is detected in any sensor measurements, then an 

accommodated corresponding signal will be sent instead of the faulty signal. 

• Step 6:  Send a faulty-sensor alarm signal to the monitoring system. 

 

Figure 5.8: AFTC Algorithm Structure.  
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A. AFTC Algorithm Testing 

The proposed algorithm was tested using MATLAB/Simulink Benchmark model. Figure 5.9 

shows the corresponding speed sensor measurement of the near turbine in the wind farm, which 

is assumed to be 50 rpm lower due to differences in mechanical parts between the identical 

turbines. The resulting effects on the generated power was slight compared with the fault-free 

operation mode as shown in figure 5.10.  

 
Figure 5.9: Corresponding ωg sensor measurement of the near turbine in the wind farm 

 
Figure 5.10: Pg measurement using reconstructed signal of ωg. 
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B. Technical Applicability 

Any type of controller could be used like PLC with high-speed processor and clocking 

speed and as many as required analog inputs to read the field devices like speed sensors and 

power measuring devices in addition to a communication module to support any field bus 

protocol used in the site such as Modbus or TCP/IP Ethernet protocol to communicate the 

data with other controllers and also with the site operators if valid through HMI or local PC. 

The processed data can be monitored remotely through any type of gateway, such as a web-

embedded server gateway to let the remote operator. 

To monitor or even to control the system if required from anywhere. The sampling rate's 

low frequency of 100 Hz allows all previously mentioned devices to process and transmit the 

data within the time limits. 

So, regarding the online capability of the controller, it is so clear that it is easily 

affordable on-site, but remotely, it will be limited to the communication media speed. Also, 

the plc and the gateway have the logging capability with time stamping to facilitate the fault 

isolation process. 
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Chapter Six  

Conclusion and Future Work 

6.1  Conclusion 

Sensors faults in pitch angles positions, rotor and generator speeds were investigated, each 

fault effects on wind turbine performance were studied. It was noticed that the effects of the 

aforementioned sensors’ faults on wind turbine performance were significantly high.  

A fault detection filter has been formulated and adopted to the wind turbine model. The sensor 

fault detection process has been tested on the wind turbine benchmark model. The investigated 

sensor faults were all detected successfully by the adopted detection filter.  

An algorithm was developed to overcome the missing measurement signals of the sensors and 

provide the controller with alternative solutions so the turbine can continue the operation with high 

performance, reliability, and safety.  

6.2 Recommended Future Work 

Researchers interested in this topic can invest in this research and build on it to include other 

types of faults, especially actuator faults. It is also possible to investigate optimization techniques 

for the fault detection process, which will help reduce the impact of disturbances and increase 

faults sensitivity while focusing on the need to reduce the complexity of the computational process 

to maintain a fast fault detection rate.
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